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Abstract—The reaction of AlCl3 with lithium-N,N-dimethylaminoethanolate (3) in a 1:1 ratio yields the corresponding organo-
aluminium chloride [Cl2Al(�-OCH2CH2NMe2)]2 (1) from which the diallyl derivative [(CH2�CHCH2)2Al(�-OCH2CH2NMe2)]2 (4)
was synthesized by treatment with 2 equiv. of allyl magnesium bromide. The structures of 1 and 4 were deduced from the 1H, 13C,
27Al NMR spectra and confirmed by X-ray structural determination. The allyl aluminium complex 4 was found to be a useful
reagent for the transfer of one allyl group to aldehydes, imines and enones. The 1,2-addition products are formed in high yields.
© 2002 Elsevier Science Ltd. All rights reserved.

Although organo-aluminium compounds have found a
wide-spread use in organic synthesis,1 only a few allyl
derivatives have been investigated and found applica-
tion.2 The etherates of allyl-, methallyl-, and crotyl-alu-
minium compounds seem to be stable at room
temperature,3 but owing to the high auto reactivity of
such allylic alanes so far only one pure compound has
been isolated and characterized by 1H NMR
spectroscopy.4

In the framework of our studies on intramolecularly
stabilized organo-aluminium compounds, we recently
reported the synthesis of a vinyl-aluminium compound

and its application in organic synthesis.5 In this paper the
synthesis, spectroscopic investigation and characteriza-
tion of the allyl analogue and its use in organic synthesis
will be reported.

Previously we reported the synthesis of the dimeric
dichloroaluminium alkoxide [Cl2Al(�-OCH2CH2-

NMe2)]2 (1) via abstraction of HCl by reacting
equivalent amounts of AlCl3 with Me2NCH2CH2OH
(2).5 Via an alternative route pure 16 can be isolated by
reacting the lithium-alcoholate (3) with equimolar
amounts of AlCl3 (Scheme 1).7 Recrystallization of the
crude product from THF yielded colorless crystals of 1.

Scheme 1. (a) To a solution of Me2NCH2CH2OH (2) (6.24 g, 70.11 mmol) in n-hexane (50 mL) was added n-BuLi (44 mL, 70.11
mmol, 1.6 M) in n-hexane at 0°C. The mixture was stirred for 12 h at room temperature and the solvent was removed under
reduced pressure. The crude product was recrystallized from hexane. Yield: 5.5 g (84%) of 3. (b) To a solution of AlCl3 (3.99 g,
29.9 mmol) in diethyl ether (50 mL) at 0°C was added 3 (2.84 g, 29.9 mmol) in diethyl ether (50 mL) at −78°C. The mixture was
stirred for 12 h at 20°C, the solvent was decanted, and the crude product was recrystallized from THF. Yield: 4.00 g (74%) of
pure 1.
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Scheme 2. CH2�CHCH2MgCl (12.7 mL, 1.63 M) in THF was added to 1 (1.91 g, 10.32 mmol) in THF (60 mL) at −78°C. The
solution was stirred for 12 h at 0°C, the solvent was removed under vacuum, and the residue was washed with n-hexane (70 mL).
Filtration and concentration of the organic phase yielded, after recrystallization from hexane, pure 4 (1.44 g, 71%).

Figure 1. ORTEP8 diagram of the structure of [Cl2Al(�-OCH2CH2NMe2)]2 (1). Thermal ellipsoids are shown at the 50%
probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths (A� ) and angles (°): Al�O 1.8403(19), Al�O�
1.8632(19), Al–N 2.066(2), Al–Cl(1) 2.1661(10), Al�Cl(2) 2.1833(10); N�Al�O� 152.94(9), O�Al�O� 75.39(9), O�Al�N 81.43(9),
O�Al�Cl(1) 111.31(7), O�Al�Cl(2) 138.58(7), O��Al�Cl(1) 100.72(7), O��Al�Cl(2) 95.17(7), Cl(1)�Al�Cl(2) 110.06(4), Cl(1)�Al�N
100.58(7), Cl(2)�Al�N 93.02(7). Symmetry transformation used to generate equivalent atoms: (�) −x+1, −y+1, −z+1.

Figure 2. ORTEP8 diagram of the structure of [(CH2�CHCH2)2Al(�-OCH2CH2NMe2)]2 (4). Thermal ellipsoids are shown at the
30% probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths (A� ) and angles (°): Al–O 1.8390(16), Al–O�
1.9426(15), Al–N 2.2026(18), Al–C(1) 2.010(2), Al–C(4) 2.014(2), C(1)–C(2) 1.471(4), C(2)–C(3) 1.303(4), C(4)–C(5) 1.462(3),
C(5)–C(6) 1.327(4); N–Al–O� 153.85(8), O–Al–O� 74.24(7), O–Al–N 79.72(7), O–Al–C(1) 118.69(9), O–Al–C(4) 127.28(10),
O�–Al–C(1) 95.74(9), O�–Al–C(4) 97.31(8), C(1)–Al–C(4) 113.87(11), C(1)–Al–N 98.80(9), C(4)–Al–N 96.50(8). Symmetry transfor-
mation used to generate equivalent atoms: (�) −x+1, −y+1, −z+1.
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Table 1. Allyltransfer studies on 1,2- and 1,4-addition of [(CH2�CHCH2)2Al(�-OCH2CH2NMe2)]2 (4) to various enones,
aldehydes and imines

a Isolated yields.
b 0.45 g (2.69 mmol) of 4 is solved in toluene (5 mL), added drop-wise to a solution of 0.29 g (2.96 mmol) in 5a in toluene (5 mL) heated to 100°C

for 12 h, and quenched with aqueous NaCl (20 mL) and HCl (10%, 2 mL). Extraction with CH2Cl2 (30 mL), dried over Na2SO4 and
concentrated, followed by purification by column chromatography (hexane/ethyl acetate 20/1). Yield: 0.37 g (93%) of 9a.

c 0.2 g (1.01 mmol) of 4, 0.19 g (1.01 mmol) of 6b. Yield: 0.22 g (95%) of 9b.
d 0.94 g (4.76 mmol) of 4, 0.89 g (4.76 mmol) of 7. Yield: 0.98 g (90%) of 10.
e 0.18 g (1.0 mmol) of 4, 0.21 g (1.0 mmol) of 8. Yield: 0.07 g of 11a and 0.15 g of 11b (87%).
f 0.11 g (0.65 mmol) of 4 is solved in toluene (5 mL). 0.14 g (0.65 mmol) of trans-chalcone 8 in toluene (5 mL) and 10 mol% of Ni(acac)2 are

added, stirring for 12 h at 22°C. Yield: 0.15 g (91%) of 11b.

N,N-Dimethylaminoethanolatoaluminium dichloride
(1) reacts with 2 equiv. of allyl magnesium bromide to
form the new diallyl-aluminum complex [(CH2�
CHCH2)2Al(�-OCH2CH2NMe2)]2 (4)9 via salt elimina-
tion (Scheme 2). Compound 4 could be isolated as
colorless crystals from its n-hexane solution. The com-
pound proved to be stable at room temperature. Even

after a couple of days storage under nitrogen no
decomposition was observed.

Crystals of 1 (Fig. 1) and 4 (Fig. 2) suitable for
single-crystal X-ray analysis10 were obtained from THF
and n-hexane solution at −28°C. Compounds 1 and 4
are oxygen-bridged dimeric molecules with inversion
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symmetry in the solid state. In both compounds, the
aluminium atoms are five-coordinated with a distorted
trigonal bipyramidal geometry. The nitrogen and one
oxygen atom are in the axial positions, whereas the
bridging oxygen and two chlorine atoms (1) or the
bridging oxygen and two carbon atoms of the allylic
groups (4) occupy the equatorial positions. The
Al�Oaxial (1.94 A� ), Al�Oequat. (1.84 A� ) and Al�N bond
lengths (2.20 A� ) and the N�Al�O� angle (153.9°) in 4
are in close accordance with the values recently
reported for the analogous vinylalane (Al�Oaxial 1.92 A� ;
Al�Oequat. 1.84 A� ; N�Al�O� 153.1°).5 The electron-with-
drawing effect of the chlorine is responsible for the
decrease of the Al–N (2.07 A� ) and Al�Oaxial (1.86 A� )
distances in 1, but does not affect the Al�Oequat. (1.84
A� ) distance, which is similar to that in 4 and close to
values found for other dimethylaminoalkoxides.11

In order to test the use of compound 4 in organic
synthesis, a variety of aldehydes, imines, and enones
were reacted with the allyl-alane (Table 1).12 In a
standard procedure, a solution of the substrate in tolu-
ene was treated with 4. The mixture was stirred for 12
h at 100°C, and after a standard workup in the case of
benzaldehyde 5a, para-bromo-benzaldehyde 6b (entries
1 and 2) and benzylidene-cyclohexyl-amine 7 (entry 3),
the 1,2-addition products 9a,13 9b14 and 1015 were iso-
lated in high yields. Treatment of 1,3-diphenyl-2-
propene-1-one PhCH�CHCOPh (trans-chalcone) (8)
with alane 4 at 100°C yields a mixture of 1,4- (11a)16

and 1,2-adduct (11b)17 in a 1:3 ratio (entry 4). The
regioselectivity of the transfer improved under milder
conditions upon addition of 10 mol% Ni(acac)2-cata-
lyst. The reaction was stirred at room temperature for
12 h and solely 1,2-adduct isolated (entry 5).

In summary, N,N-dimethylaminoethanolatoaluminium
dichloride (1) is an excellent starting material for the
synthesis of intramolecularly stabilized organo-alu-
minium compounds with allylic ligands. It enables the
synthesis of the first stable allyl-aluminium compound
4, which has been characterized by X-ray structure
analysis, via salt elimination. This new type of alu-
minium reagent shows high potentials in organic syn-
thesis, as demonstrated in the transfer of the allyl group
to a selection of aldehydes, carbonyles, and imines via a
1,2-addition.
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Eur. J. Inorg. Chem. 1999, 153; (b) Minowa, N.;
Mukaiyama, T. Bull. Chem. Soc. Jpn. 1987, 60, 3697; (c)
Mukaiyama, T.; Minowa, N.; Oriyama, T.; Narasaka, K.
Chem. Lett. 1986, 97; (d) Zhang, Y.; Negishi, E. J. Am.
Chem. Chem. Soc. 1989, 111, 3454; (e) You, J.-S.; Hsieh,
S.-H.; Gau, H.-M. Chem. Commun. 2001, 1546.

3. Lehmkuhl, H.; Reinehr, D. J. Organomet. Chem. 1970,
23, C25.

4. Stefani, A.; Pino, P. Helv. Chim. Acta 1972, 55, 1110.
5. Schumann, H.; Kaufmann, J.; Dechert, S.; Schmalz, H.-

G.; Velder, J. Tetrahedron Lett. 2001, 42, 5405.
6. Spectral data for 1: 1H NMR (d-pyridin): � 2.47 (s, 6H,

NCH3), 2.83 (t, 1H, J=6.06 Hz, NCH2), 4.05 (t, 2H,
J=6.06 Hz, OCH2). 13C NMR (d-pyridin): � 33.12,
52.12, 58.77. 27Al NMR: 58.20 Hz. Mp 248.5–249.0°C
(dec.). Anal. calcd for C8H20Al2Cl4N2O2: C, 25.83; H,
5.42. Found C, 25.61; H, 6.11%. MS: m/z (%): 371.9 (1)
[M]+, 337.1 (11), 72.1 (18), 77.2 (23), 58.1 (100).

7. All reactions were carried out in an atmosphere of dry,
oxygen-free nitrogen using Schlenk techniques. Solvents
were dried over sodium, purified and saturated with
nitrogen prior to use. Elemental analyses were performed
on a Perkin–Elmer 240 C elemental analyser. Mass spec-
tra (electron impact ionisation) were obtained on a
Varian MAT 311 A instrument (70 eV). NMR spectra
were recorded on a Bruker ARX 200 spectrometer (1H
NMR at 200 MHz; 13C{1H} NMR at 50.32 MHz) unless
stated otherwise.

8. Zsolnai, L.; Pritzkow, H. ZORTEP ORTEP Program for
PC; Universität Heidelberg, 1994.

9. Spectral data for 4: 1H NMR (C6D6): � 1.19 (d, 8H,
J=8.67 Hz, AlCH2) 1.87 (s, 6H, NCH3), 1.95 (t, 2H,
J=5.88 Hz, NCH2), 3.48 (t, 2H, J=5.88 Hz, OCH2),
4.75–4.82 (m, 1H, CH�CHH �), 4.89–4.91 (m, 1H,
CH�CHH�), 6.22–6.35 (m, 1H, CH�CHH�). 13C NMR
(C6D6): � 20.18, 44.77, 56.96, 59.01, 105.34, 143.93. 27Al
NMR: 89.23 Hz. Mp 100.2–101.6°C. Anal. calcd for
C20H40Al2N2O2: C, 60.89; H, 10.22. Found C, 60.12; H,
10.36%. MS: m/z (%): 353.1 (14) [M−C3H5]+, 156.0 (28),
72.1 (100), 42.0 (32).

10. X-Ray structure determination. Data were collected on a
Siemens SMART CCD diffractometer (graphite
monochromated Mo K� radiation, �=0.71073 A� ) with
area-detector at 173 K. The structures were solved by
direct methods and refined on F2 using all reflections with
the SHELX-97 software package [Sheldrick, G. M.
SHELX-97 Program for Crystal Structure Determina-
tion, Universität Göttingen, Göttingen, Germany, 1997].
All non-hydrogen atoms were refined anisotropically. The
hydrogen atoms were placed in calculated positions and
assigned an isotropic displacement parameter of 0.08 A� 2.
SADABS [Sheldrick, G. M. SADABS Empirical Absorp-



H. Schumann et al. / Tetrahedron Letters 43 (2002) 3507–3511 3511

tion Correction Program, Universität Göttingen, Göttin-
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